Online Markov Decoding: Lower Bounds and Near-Optimal Approximation Algorithms

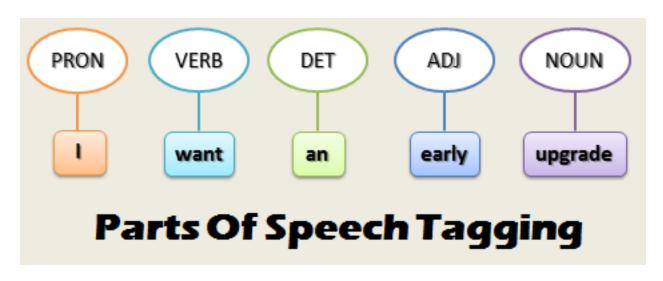
Vikas K. Garg, Tamar Pichkhadze
MIT

What is Markov chain decoding?

- Given a sequence of observations $x = (x_1, x_2, ..., x_T)$
- Assume x generated by state sequence $y = (y_1, y_2, ..., y_T)$
- Each state y_i takes value in a discrete set and emits x_i
- We do not know y but would like to infer it from x
- Markov chain of order k:

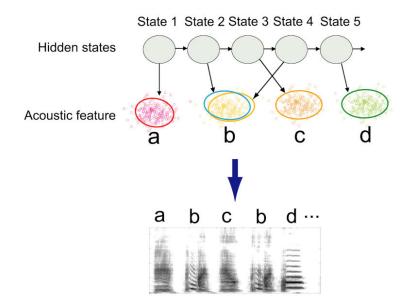
y_i depends on only previous states y_{i-1}, ..., y_{i-k}

Markov chain models are ubiquitous!



- Bioinformatics (e.g. gene sequencing)
- Computer Vision (e.g. gesture recognition)
- Telecommunication (e.g. convolutional codes)
- Language processing (e.g. named entity recognition)
- Computer Networks (e.g. intrusion detection)
- Speech recognition ...

...



First Order Markov chain models

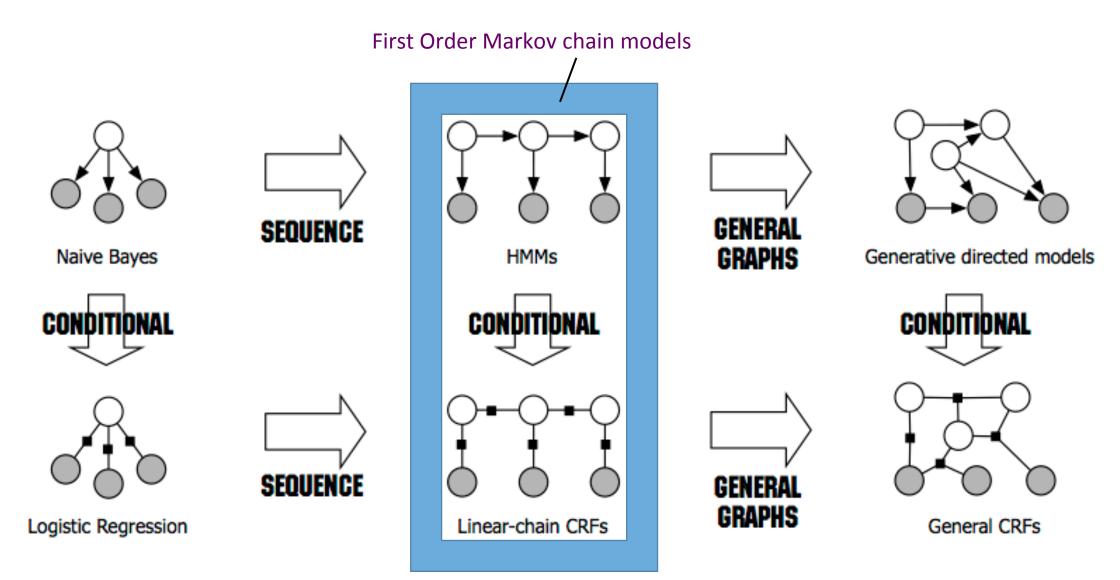
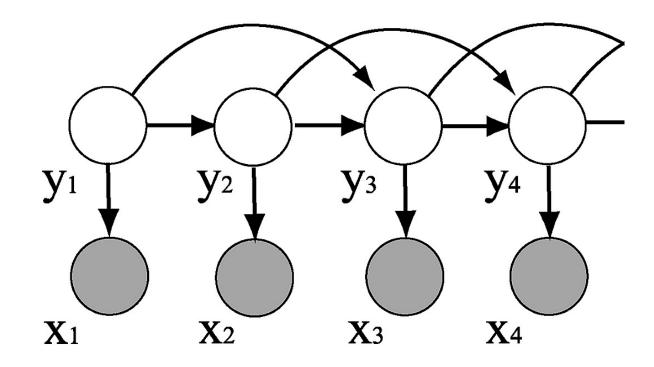


Image adapted from: Sutton and McCallum (An Introduction to Conditional Random Fields)

Higher order Markov chain models



Second order model

Ergodic Markov chains

- Might have additional constraints on y_i, y_{i+1}
- e.g., part-of-speech tagging on input document
 - label each word with tag, e.g., noun, adjective, or punctuation mark
 - unlikely that y_i and y_{i+1} are both punctuation marks
- Markov chain ergodic if any state can be reached from any other state in finite (at most △) steps
 - Δ is the diameter
 - we define effective diameter $\tilde{\Delta} = \Delta + n 1$
 - here, *n* is the order of Markov chain
 - $\tilde{\Delta}$ = 1 for the fully connected (Δ = 1) first order (n = 1) setting

How do we decode Markov chains?

- May view decoding as maximizing a sum of scores or rewards
 - e.g. in first order hidden Markov Model, reward pertaining to (x_i, y_i) is simply $\log P(y_i | y_{i-1}) + \log P(x_i | y_i)$
 - find a sequence of states y that maximizes the sum
 - break ties arbitrarily
- Exact solution by dynamic programming
 - method commonly known as the Viterbi algorithm

Why online Markov decoding?

- Viterbi has high latency
 - Processes entire input x before producing any state labels
 - not suitable for several scenarios (see Narasimhan et al.)
 - network intrusion detection
 - critical patient health monitoring
 - low resource devices that cannot store long input x
- We would like to have latency at most L
 - i.e. decode any y_i using only x_i, x_{i+1}, ... x_{i+L}
 - also ensure quality of decoding does not suffer much

How do we evaluate quality of decoding?

- Assume each reward is non-negative
 - can always add same positive quantity to each possible reward
 - does not change the maximizing sequence
 - therefore, without loss of generality
- Competitive ratio (C.R.)
 - OPT = total reward fetched by optimal algorithm (Viterbi)
 - ON = total reward by online algorithm
 - C.R. = OPT/ON is our measure
 - since each reward > 0, C.R. is at least 1
 - we would like to minimize C.R.
 - plug in expected value of ON instead for randomized online algorithms

Our results on C.R.

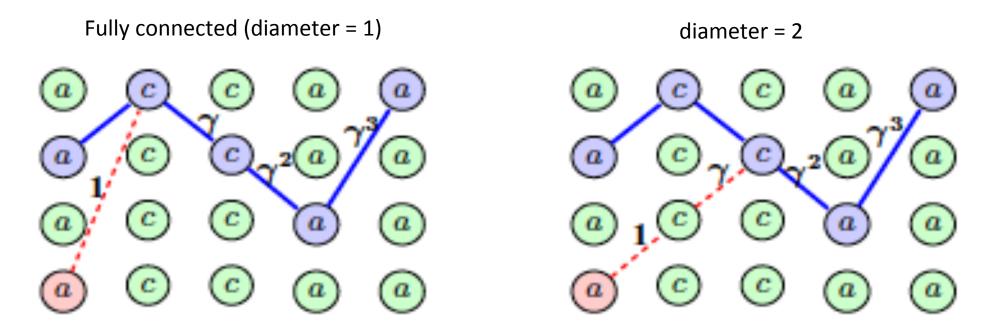
	Lower Bound	UPPER BOUND (OUR ALGORITHMS)
DETERMINISTIC		
$(\Delta = 1, n = 1)$	$1 + \frac{1}{L} + \frac{1}{L^2 + 1}$	$\min\left\{\left(1+\frac{1}{L}\right) \sqrt[L]{L+1}, 1+\frac{4}{L-7}\right\}$
RANDOMIZED	$1 + \frac{(1 - \epsilon)}{L + \epsilon}$	$1 + \frac{1}{L}$
$(\Delta = 1, n = 1, \epsilon > 0)$		
DETERMINISTIC	$1 + \frac{\tilde{\Delta}}{L} \left(1 + \frac{\tilde{\Delta} + L - 1}{(L - \tilde{\Delta} - 1)^2 + 4\tilde{\Delta}L - 3\tilde{\Delta}} \right)$	$) \qquad 1 + \min \left\{ \Theta \left(\frac{\log L}{L - \tilde{\Delta} + 1} \right) \right. , $
	, ,	$\Theta\left(\frac{1}{L-8\tilde{\Delta}+1}\right)$
RANDOMIZED ($\epsilon > 0$	$1 + \frac{\left(2^{\Delta - 1} \lceil 1/\epsilon \rceil - 1\right) n}{2^{\Delta - 1} \lceil 1/\epsilon \rceil L + n}$	$1 + \Theta\left(\frac{1}{L - \tilde{\Delta} + 1}\right)$

Some Intuition: First Order Setting

If fully connected: (recovers the single server setting in Jayram et al.)

jump to a state on Viterbi path (blue nodes) in one step, and stay for next *L* steps If not fully connected:

may have to waste additional steps before tracing Viterbi path γ is an "explore-exploit" parameter (max value 1) that can be optimized based on L



Jayram et al. (Online server allocation in a server farm via benefit task systems)

Key ideas: Algorithms and Analyses

- Understand the role of diameter and order for fixed latency
 - greater the diameter, worse the performance of online algorithm
 - likewise for the order
- Toolkit
 - adaptive optimization perspective for algorithm design
 - approximate Viterbi by a sequence of smaller problems, each over latency L
 - formulate optimization objectives that ensure each smaller problem is "good"
 - good if Viterbi only marginally better than the online algorithm on the smaller problem
 - prismatic polytope constructions for lower bounds
 - conjure scenarios such that the effects of diameter and order add up