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Graph compression

* Improved performance
* reduced storage requirements
e faster algorithms
* removal of spurious features for downstream tasks

e summarization/better visualization

Image source: Houw Liong The, Lecture 12 on graph mining.



Standard approach 1: Compression via coarsening

Find a matching, merge the matched vertices, and repeat.
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Image source: Aydin Buluc, SIAM Journal on Scientific Computing, 2011.



Standard approach 2: Compression via sparsification

Keep the vertices intact, and delete edges instead.

Image source: Daniel Spielman, Workshop on Algorithms for Modern Massive Datasets.



: . .
What's missing?
* Existing approaches try to preserve the graph spectrum, cuts etc.

* oblivious to attribute information, e.g., graph labels and node features

* Compression criteria not given as an optimization problem

e |ess suitable for robustly linking with downstream tasks



Optimal transport cost on a graph

Suppose we fix an initial distribution and a target distribution on the nodes.

What's the minimum cost to transfer mass if we only allow flow along the edges?
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Example: Cost associated with the indicated flow (not necessarily optimal)



How do we compute the optimal transport (OT) cost?

Previously known for directed graphs only. We extend to the undirected setting.
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c(e) : cost of transporting unit flow on edge e
Jt(e), J (e) : flow on e in two directions

F : unoriented (unsigned) incidence matrix

P0, P1 - initial and target distributions



Outline of our approach

* Define OT on a (directed/annotated) graph

e cost depends on specified prior information
* e.g. importance of nodes and their labels or attributes
e thus can be informed by the downstream task

* Optimize the target distribution (its support)

® using aregularized OT cost as the criterion
* key step: we show how subgraph selection is found (yet to be illustrated)



Challenge: Target distribution is not known

* Combinatorial problem! Need to compute optimal cost relative to
every target distribution over the specified size of support
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Optimization formulation
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Solving the optimization

* Non-convex due to sparsity constraint |lp1llo < &
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e Relax each coordinate of € to [0, 1] and solve. Perform rounding to have at most
k vertices. The spanned subgraph is our compressed graph.



Performance on standard graph datasets
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Qualitative results on synthetic and real data
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(a) Synthetic graph (b) Compressed graph (k = 20)  (c) Compressed graph (k = 15)

(d) Compressed graph (k = 5) (e) Mutagenicity (f) MSRC-21C



Conclusion

* A new principled approach to compressing graphs
* Prior information can be seeded easily
 Suitable for downstream tasks such as classification

* Interesting directions
* complement encoding (compression) with decoding (decompression)

* expand the framework to allow additional constraints (e.g. requiring the
compressed graph to be connected)

* higher order, structured graph compression



